Elaboró: Paola A. Palmeros Suárez

LIABOIO. I adia A. I allicida dualez			i cella de ciabolación. Abili 2011		
Programa de estudio de la materia:			Respuestas de las plantas a estrés abiótico		
CLAVE:			ÁREA DE FORMACIÓN	TIPO: Tópio Selec	
DEPARTAMENTO		Producción Agrícola	NIVEL:	Maestría	
Horas seman Conducción		Horas semana trabajo individual	4	HORAS TOTALES: 34	
Docente CRÉDITOS:		individuai	Prerrequisitos sugeridos:	Fisiologia vegetal	

Fecha de elaboración: Abril 2017

PRESENTACIÓN DEL CURSO

El curso permitirá conocer los aspectos relacionados a las respuestas de tipo celular y molecular que llevan a cabo las plantas cuando se enfrentan a condiciones ambientales adversas, principalmente cambios ocasionados por factores abióticos. Se identificarán las afecciones ocasionadas por el cambio climático, contaminación en suelos y erosión, y cómo las algunas plantas pueden tolerar este tipo de estrés. Con dicho conocimiento, se podrán implementar técnicas y desarrollar trabajos de investigación que permitan solucionar algunos de los problemas a nivel ambiental y alimenticio en el área agropecuaria.

OBJETIVO GENERAL

Conocer los aspectos morfológicos, bioquímicos y moleculares que desarrollan las plantas al estar sometidas a estrés abiótico.

OBJETIVOS PARTICULARES

- Identificar los tipos de respuestas que existen a diferentes condiciones ambientales.
- Comprender los mecanismos a nivel morfológico y bioquímico que permiten la adaptación a ambientes adversos.
- Conocer los elementos genéticos que están involucrados en la respuesta a estrés abiótico.
- Emplear las técnicas de vanguardia a nivel genético y molecular para la solución de problemas relacionados con ambientes adversos.

PERFIL DE EGRESO

Iden

El estudiante conocerá los mecanismos que emplean las plantas para hacer frente a diversos tipos de estrés abiótico, identificará las respuestas genéticas y moleculares que desarrollan de acuerdo al ambiente donde se encuentren y tendrá los conocimientos para obtener plantas resistentes a estrés.

COMPETENCIAS PROFESIONALES

El alumno tendrá capacidad para:

- Aplicar el conocimiento adquirido para la solución de problemas reales relacionados con pérdidas en la producción agrícola por cambios ambientales.
- Emplear técnicas de vanguardia como la tecnología del DNA recombinante para obtener cultivos resistentes a condiciones adversas.
- Realizar la selección e identificación de individuos resistentes y tolerantes a diferentes tipos de estrés abiótico para poder ser utilizados en mejoramiento genético.

METODOLOGÍA DEL CURSO (modalidad el proceso enseñanza aprendizaje)

El curso estará constituido por la impartición de clase por parte del profesor investigador, lectura y discusión de artículos científicos, exposición por parte de los alumnos y resolución de problemas reales planteados.

CRITERIOS DE EVALUACIÓN

Exámenes	50 %
Discusión de artículos	20 %
Exposiciones	20 %
Trabajo final	10 %
TOTAL	100 %

CONTENIDO TEMÁTICO

1. Introducción

- 1.1 Qué es el estrés en plantas
- 1.2 Tipos de estrés
- 1.3 Estrés abiótico

2. Estrés Hídrico

- 2.1 Factores que provocan el estrés por sequía
- 2.2 Adaptaciones morfológicas de las plantas al estrés hídrico
- 2.3 Elementos compatibles (prolina, glicina betaína, polialcoholes, iones)
- 2.4 Respuestas moleculares

3. Estrés salino

- 3.1. Mecanismos celulares de las plantas tolerantes
- 3.2. Homeostasis iónica
- 3.2.1 Bombas de Na+ y K+
- 3.2.2 Vía SOS reguladora de la homeostasis
- 3.2.3 Acuaporinas

4. Estrés por cambios de temperaturas

- 4.1. Efectos del frío en el metabolismo vegetal
- 4.1.1 Respuesta de las plantas a estrés por frío
- 4.1.2 cambios en la membrana celular
- 4.1.3 Moléculas de respuesta a frío
- 4.2 Respuesta de las plantas a estrés por calor
- 4.2.1. Fotosíntesis
- 4.2.2 Desarrollo y rendimiento
- 4.2.3 Mecanismos de tolerancia a calor
- 4.2.4 Respuesta antioxidante

5. Estrés por metales pesados

- 5.1 Efecto de metales pesados en plantas
- 5.2 Estrés por Cr, Al, Mn, Ni, Cu, Zn
- 5.3 Mecanismos de defensa empleados contra Metales pesados
- 5.3.1. Fitoquelantes (PCs)
- 5.3.2. Metalotioninas (MTs)

6. Respuestas moleculares al estrés abiótico

- 6.1 Protein cinasas
- 6.2 Fosfolipasa C
- 6.3 Calcio
- 6.4 Proteínas LEA
- 6.5 Participación de ABA en respuesta a estrés abiótico
- 6.6 Factores de transcripción (CBF, ABRE, MYC, MYB, WRKY, ERF)

7. ESTRATEGIAS MODERNAS PARA ESTUDIAR GENES DE RESPUESTA A ESTRÉS

- 7.1 Tecnología del DNA recombinante
- 7.2 Marcadores genéticos
- 7.3 Proteómica
- 7.4 Metabolómica

BIBLIOGRAFÍA

- Jian-Kang Zhu. **2002**. Salt and rought stress signal transduction in plants. *Annual Reiew of Plant Biology* 53:247–73.
- Viswanathan Chinnusamy, Karen Schumaker, Jian-Kang Zhu. **2003**. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. *Journal of Experimental Botany* 55(395).
- Wangxia Wang, Basia Vinocur, Arie Altman. 2003. Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance. Planta 218: 1–14.
- Hong-Bo Shao, Qing-Jie Guo, Li-Ye Chu, Xi-Ning Zhao, Zhong-Liang Su, Ya-Chen Hu, Jiang-Feng Cheng. 2007. Understanding molecular mechanism of higher plant plasticity under abiotic stress. Colloids and Surfaces B: Biointerfaces 54:37–45.
- N. Sreenivasulu, S.K. Sopory, P.B. Kavi Kishor . 2007. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. *Gene* 388 :1-13.
- Pooja Bhatnagar-Mathur, V. Vadez, Kiran K. Sharma. 2008. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. *Plant* Cell Reports 27:411–424.
- Elisabetta Mazzucotelli, Anna M. Mastrangelo, Cristina Crosatti, Davide Guerra, A. Michele Stanca, Luigi Cattivelli 2008. Abiotic stress response in plants: When post-transcriptional and post-translational regulations control transcription. *Plant Science* 174: 420–43.
- Ishita Ahuja, Ric C.H. de Vos, Atle M. Bones, Robert D. **2010**. Hall Plant molecular stress responses face climate change *Trends in Plant Science* 15 (12):664-674.
- Takashi Hirayama and Kazuo Shinozaki. 2010. Research on plant abiotic stress responses in the post-genome era: past, present and future *The Plant Journal* 61, 1041–1052.
- Sudesh Kumar Yadav. 2010. Cold stress tolerance mechanisms in plants. A review. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA 30(3).

- Zvi Peleg and Eduardo Blumwald. **2011**. Hormone balance and abiotic stress tolerance in crop plants. *Current Opinion in Plant Biology* 14:290–295.
- Gulzar S. Sanghera, Shabir H. Wani, Wasim Hussain, N.B. Singh. 2011. Engineering Cold Stress Tolerance in Crop Plants. Current Genomics 12:30-43.
- Maria Reguera, Zvi Peleg, Eduardo Blumwald. 2012. Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. *Biochimica et Biophysica Acta* 1819: 186–194.
- Mirza Hasanuzzaman, Kamrun Nahar, Md. Mahabub Alam, Rajib Roychowdhury, Masayuki Fujita. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants international *Journal of Molecular Sciences* 14:9643-9684.
- Madhulika Singh, Jitendra Kumar, Samiksha Singh, Vijay Pratap Singh, Sheo Mohan Prasad, MPVVB Singh. 2015. Adaptation Strategies of Plants against Heavy Metal Toxicity: A Short Review. *Biochemistry & Pharmacology* 2015:4-2.